Affiliation:
1. College of Ocean and Meteorology Guangdong Ocean University Zhanjiang China
2. College of Chemistry and Environmental Science Guangdong Ocean University Zhanjiang China
3. Key Laboratory of Climate Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province Guangdong Ocean University Zhanjiang China
Abstract
AbstractThe Luzon Strait is a channel where warmer Kuroshio water from the Pacific Ocean intrudes into the South China Sea (SCS). Under climate change impact, the temperature in marginal seas, including the SCS, rises faster than in open oceans. We speculated that the variation of frontal intensity and its eco‐environmental impact in the Luzon Strait may be different from coastal waters, whose frontal intensity is increasing, thus stimulating phytoplankton growth. To confirm this speculation, 40‐year satellite, and multiple data sources were analyzed in the Luzon Strait. The results showed that strong frontal intensity (front coverage of over 60%) and higher Chlorophyll a content occurred simultaneously in the Luzon Strait during the winter monsoon period. Phytoplankton blooms were enhanced during El Niño years because the stronger Kuroshio intrusion generated stronger fronts and intensified local upwelling in the Luzon Strait. On an interannual scale, the frontal intensity and phytoplankton growth exhibited a significantly decreasing trend in the Luzon Strait over the past 40 years, since the faster warming in the SCS reduced the temperature difference between the Pacific Ocean and the SCS. Warming and weakening fronts reduced the mixed layer depth to the oligotrophic layer, thus limiting the phytoplankton growth. This study confirmed that faster temperature rises in marginal seas reduced the frontal intensity and phytoplankton growth in the strait between oceans and marginal seas.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献