Short-Term Climate Extremes: Prediction Skill and Predictability

Author:

Becker Emily J.1,van den Dool Huug1,Peña Malaquias2

Affiliation:

1. Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

2. IMSG at Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland

Abstract

Abstract Forecasts for extremes in short-term climate (monthly means) are examined to understand the current prediction capability and potential predictability. This study focuses on 2-m surface temperature and precipitation extremes over North and South America, and sea surface temperature extremes in the Niño-3.4 and Atlantic hurricane main development regions, using the Climate Forecast System (CFS) global climate model, for the period of 1982–2010. The primary skill measures employed are the anomaly correlation (AC) and root-mean-square error (RMSE). The success rate of forecasts is also assessed using contingency tables. The AC, a signal-to-noise skill measure, is routinely higher for extremes in short-term climate than those when all forecasts are considered. While the RMSE for extremes also rises, especially when skill is inherently low, it is found that the signal rises faster than the noise. Permutation tests confirm that this is not simply an effect of reduced sample size. Both 2-m temperature and precipitation forecasts have higher anomaly correlations in the area of South America than North America; credible skill in precipitation is very low over South America and absent over North America, even for extremes. Anomaly correlations for SST are very high in the Niño-3.4 region, especially for extremes, and moderate to high in the Atlantic hurricane main development region. Prediction skill for forecast extremes is similar to skill for observed extremes. Assessment of the potential predictability under perfect-model assumptions shows that predictability and prediction skill have very similar space–time dependence. While prediction skill is higher in CFS version 2 than in CFS version 1, the potential predictability is not.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3