Prediction of Monthly-Mean Temperature: The Roles of Atmospheric and Land Initial Conditions and Sea Surface Temperature

Author:

Chen Mingyue1,Wang Wanqiu1,Kumar Arun1

Affiliation:

1. Climate Prediction Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Abstract

Abstract Using the retrospective forecasts from the National Centers for Environmental Prediction (NCEP) coupled atmosphere–ocean Climate Forecast System (CFS) and the Atmospheric Model Intercomparison Project (AMIP) simulations from its uncoupled atmospheric component, the NCEP Global Forecast System (GFS), the relative roles of atmospheric and land initial conditions and the lower boundary condition of sea surface temperatures (SSTs) for the prediction of monthly-mean temperature are investigated. The analysis focuses on the lead-time dependence of monthly-mean prediction skill and its asymptotic value for longer lead times, which could be attributed the atmospheric response to the slowly varying SST. The results show that the observed atmospheric and land initial conditions improve the skill of monthly-mean prediction in the extratropics but have little influence in the tropics. However, the influence of initial atmospheric and land conditions in the extratropics decays rapidly. For 30-day-lead predictions, the global-mean forecast skill of monthly means is found to reach an asymptotic value that is primarily determined by the SST anomalies. The lead time at which initial conditions lose their influence varies spatially. In addition, the initial atmospheric and land conditions are found to have longer impacts in northern winter and spring than in summer and fall. The relevance of the results for constructing lagged ensemble forecasts is discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3