Austral Spring Southern Hemisphere Circulation and Temperature Changes and Links to the SPCZ

Author:

Clem Kyle R.1,Renwick James A.1

Affiliation:

1. School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Abstract

Abstract Significant austral spring trends have previously been observed in West Antarctica and Antarctic Peninsula temperatures and in atmospheric circulation across the southern Pacific and Atlantic. Here, physical mechanisms for the observed trends are investigated through analysis of monthly circulation and temperatures from the ERA-Interim dataset and outgoing longwave radiation (OLR) data. The negative pressure trend over the South Pacific during spring is strongest in September, while the positive pressure trend over the South Atlantic is strongest in October. Pressure trends in November are generally nonsignificant. The authors demonstrate that a significant September trend toward increased convection (reduced OLR) in the poleward portion of the South Pacific convergence zone (SPCZ) is statistically related to Rossby wave–like circulation changes across the southern oceans. The wave response is strongest over the South Pacific in September and propagates eastward to the South Atlantic in October. OLR-related changes are linearly congruent with around half of the observed total changes in circulation during September and October and are consistent with observed trends in South Pacific sea ice concentration and surface temperature over western West Antarctica and the western Antarctic Peninsula. These results suggest SPCZ variability in early spring, especially on the poleward side of the SPCZ, is an important contributor to circulation and surface temperature trends across the South Pacific/Atlantic and West Antarctica.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3