Impacts of CP- and EP-El Niño events on the Antarctic sea ice in austral spring

Author:

Zhang Chao1,Li Tim23,Li Shuanglin145

Affiliation:

1. a Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

2. b International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA

3. c Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC FEMD), Nanjing University of Information Science and Technology, Nanjing, China

4. d Institute of Atmospheric Physics/Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

5. e College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China

Abstract

AbstractBased on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP-) El Niño and eastern Pacific (EP-) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September to November). The tropical heat sources associated with EP-El Niño and the co-occurred positive phase of Indian Ocean Dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross-Amundsen-Bellingshausen Seas. Anomalous northerly (southerly) wind west (east) of the anomalous anticyclone favor poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advected warmer and wetter (colder and drier) air into the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP-El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross-Amundsen Seas, 20° west of that caused by EP-El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP-El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP-El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3