The Role of Plant CO2 Physiological Forcing in Shaping Future Daily-Scale Precipitation

Author:

Skinner Christopher B.1,Poulsen Christopher J.1,Chadwick Robin2,Diffenbaugh Noah S.3,Fiorella Richard P.4

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

2. Met Office Hadley Centre, Exeter, United Kingdom

3. Department of Earth System Science, and Woods Institute for the Environment, Stanford University, Stanford, California

4. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, and Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah

Abstract

Continued anthropogenic CO2 emissions are expected to drive widespread changes in precipitation characteristics. Nonetheless, projections of precipitation change vary considerably at the regional scale between climate models. Here, it is shown that the response of plant physiology to elevated CO2, or CO2 physiological forcing drives widespread hydrologic changes distinct from those associated with CO2 radiative forcing and has a role in shaping regional-scale differences in projected daily-scale precipitation changes. In a suite of simulations with the Community Climate System Model, version 4 (CCSM4), reduced stomatal conductance from projected physiological forcing drives large decreases in transpiration and changes the distribution of daily-scale precipitation within and adjacent to regions of dense vegetation and climatologically high transpiration. When atmospheric conditions are marginally favorable for precipitation, reduced transpiration dries the boundary layer and increases the likelihood of dry day occurrence. In CCSM4, the annual number of dry days increases by upward of 15 days yr−1 over tropical land and the continental midlatitudes. Decreases in transpiration from physiological forcing also increase the number of heavy precipitation events by up to 8 days yr−1 in many tropical forest regions. Despite reductions in the land surface contribution to atmospheric moisture, diminished surface latent heat fluxes warm the forest boundary layer and increase moisture convergence from nearby oceans, enhancing instability. The results suggest that consideration of the radiative impacts of CO2 alone cannot account for projected regional-scale differences in daily precipitation changes, and that CO2 physiological forcing may contribute to differences in projected precipitation characteristics among climate models.

Funder

National Science Foundation

Met Office

University of Michigan Turner Fellowship

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3