Impacts of Sea Ice Thickness Initialization on Seasonal Arctic Sea Ice Predictions

Author:

Dirkson Arlan1,Merryfield William J.2,Monahan Adam1

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

2. Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract A promising means for increasing skill of seasonal predictions of Arctic sea ice is improving sea ice thickness (SIT) initial conditions; however, sparse SIT observations limit this potential. Using the Canadian Climate Model, version 3 (CanCM3), three statistical models designed to estimate SIT fields for initialization in a real-time forecasting system are applied to initialize sea ice hindcasts over 1981–2012. Hindcast skill is assessed relative to two benchmark SIT initialization methods (SIT-IMs): a climatological initialization currently used operationally and SIT values from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Based on several measures of skill, sea ice predictions are generally improved relative to a climatological initialization. The accuracy with which the initialization fields represent both the thinning of the ice pack over time and interannual variability impacts predictive skill for pan-Arctic sea ice area (SIA) and regional sea ice concentration (SIC), with the most robust improvements obtained with SIT-IMs that best represent both processes. Similar skill to that achieved by initializing with PIOMAS, including skillful predictions of detrended September SIA from May, is obtained by initializing with two of the statistical models. Regional skill for September SIC is also enhanced using improved SIT-IMs, with an increase in the spatial coverage of statistically significant skill from 10% to 60%–70% of the appreciably varying ice pack. Reduced skill is seen, however, in the Nordic seas using the improved SIT-IMs, resulting from an inherent cold sea surface temperature bias in CanCM3 that is amplified by a thicker initial ice cover.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3