Rebound in Atmospheric Predictability and the Role of the Land Surface

Author:

Guo Zhichang1,Dirmeyer Paul A.2,DelSole Timothy2,Koster Randal D.3

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

2. George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

3. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Total predictability within a chaotic system like the earth’s climate cannot increase over time. However, it can be transferred between subsystems. Predictability of air temperature and precipitation in numerical model forecasts over North America rebounds during late spring to summer because of information stored in the land surface. Specifically, soil moisture anomalies can persist over several months, but this memory cannot affect the atmosphere during early spring because of a lack of coupling between land and atmosphere. Coupling becomes established in late spring, enabling the effects of soil moisture anomalies to increase atmospheric predictability in 2-month forecasts begun as early as 1 May. This predictability is maintained through summer and then drops as coupling fades again in fall. This finding suggests summer forecasts of rainfall and air temperature over parts of North America could be significantly improved with soil moisture observations during spring.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3