Pairwise-Rotated EOFs of Global SST

Author:

Chen Xianyao1ORCID,Wallace John M.2,Tung Ka-Kit3

Affiliation:

1. Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory of Marine Science and Technology, Qingdao, China

2. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

3. Department of Applied Mathematics, University of Washington, Seattle, Washington

Abstract

Empirical orthogonal function (EOF) analysis of global sea surface temperature yields modes in which interannual variability associated with ENSO and the lower-frequency variability associated with the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are confounded with one another and with the signature of global warming. The confounded EOFs exhibit overlapping centers of action with polarities of the perturbations juxtaposed such that the respective modes are mutually orthogonal in the global domain. When physical modes with different time scales appear in the same pair of EOFs, the principal component (PC) time series tend to be positively correlated in one frequency band and negatively correlated in another. Mode mixing may be a reflection of sampling variability or it may reflect the lack of spatial orthogonality of the physical modes themselves. Using sequences of pairwise orthogonal rotations of selected PCs, it is possible, without recourse to filtering, to recover a global warming mode with a bland spatial pattern and a nearly linear upward trend, along with dynamical modes, each with its own characteristic time scale, that resemble ENSO, the PDO, and the AMO. Novel elements of this analysis include a rationale for choosing the optimal angle for pairwise rotation and a simple algorithm for eliminating mode mixing between the dynamical modes and the global warming mode by transferring the linear trends from the former to the latter.

Funder

National Science Foundation

Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3