The Influence of Orbital Forcing of Tropical Insolation on the Climate and Isotopic Composition of Precipitation in South America

Author:

Liu Xiaojuan1,Battisti David S.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract The δ18O of calcite (δ18Oc) in speleothems from South America is fairly well correlated with austral summer [December–February (DJF)] insolation, indicating the role of orbitally paced changes in insolation in changing the climate of South America. Using an isotope-enabled atmospheric general circulation model (ECHAM4.6) coupled to a slab ocean model, the authors study how orbitally paced variations in insolation change climate and the isotopic composition of precipitation (δ18Op) of South America. Compared with times of high summertime insolation, times of low insolation feature (i) a decrease in precipitation inland of tropical South America as a result of an anomalous cooling of the South American continent and hence a weakening of the South American summer monsoon and (ii) an increase in precipitation in eastern Brazil that is associated with the intensification and southward movement of the Atlantic intertropical convergence zone, which is caused by the strengthening of African winter monsoon that is induced by the anomalous cooling of northern Africa. Finally, reduced DJF insolation over southern Africa causes cooling and the generation of a tropically trapped Rossby wave that intensifies and shifts the South Atlantic convergence zone northward. In times of low insolation, δ18Op increases in the northern Andes and decreases in northeastern Brazil, consistent with the pattern of δ18Oc changes seen in speleothems. Further analysis shows that the decrease in δ18Op in northeastern Brazil is due to change in the intensity of precipitation, while the increase in the northern Andes reflects a change in the seasonality of precipitation and in the isotopic composition of vapor that forms the condensates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3