Holocene Temperature and Water Stress in the Peruvian Andes: Insights From Lake Carbonate Clumped and Triple Oxygen Isotopes

Author:

Katz Sarah A.1ORCID,Levin Naomi E.1ORCID,Abbott Mark B.2ORCID,Rodbell Donald T.3ORCID,Passey Benjamin H.1ORCID,DeLuca Nicole M.4,Larsen Darren J.5ORCID,Woods Arielle2ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA

2. Department of Geology and Environmental Science University of Pittsburgh Pittsburgh PA USA

3. Geosciences Department Union College Schenectady NY USA

4. Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD USA

5. Geology Department Occidental College Los Angeles CA USA

Abstract

AbstractGlobal climate during the Holocene was relatively stable compared to the late Pleistocene. However, evidence from lacustrine records in South America suggests that tropical latitudes experienced significant water balance variability during the Holocene, rather than quiescence. For example, a tight coupling between insolation and carbonate δ18O records from central Andean lakes (e.g., Lakes Junín, Pumacocha) suggest water balance is tied directly to South American summer monsoon (SASM) strength. However, lake carbonate δ18O records also incorporate information about temperature and evaporation. To overcome this ambiguity, clumped and triple oxygen isotope records can provide independent constraints on temperature and evaporation. Here, we use clumped and triple oxygen isotopes to develop Holocene temperature and evaporation records from three central Andean lakes, Lakes Junín, Pumacocha, and Mehcocha, to build a more complete picture of regional water balance (P–E). We find that Holocene water temperatures at all three lakes were stable and slightly warmer than during the latest Pleistocene. These results are consistent with global data assimilations and records from the foothills and Amazon basin. In contrast, evaporation was highly variable and tracks SASM intensity. The hydrologic response of each lake to SASM depends greatly on the physical characteristics of the lake basin, but they all record peak evaporation in the early to mid‐Holocene (11,700 to 4,200 years BP) when regional insolation was relatively low and the SASM was weak. These results corroborate other central Andean records and suggest synchronous, widespread water stress tracks insolation‐paced variability in SASM strength.

Funder

National Science Foundation

Geological Society of America

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3