Regime Change Behavior during Asian Monsoon Onset

Author:

Geen Ruth1,Lambert F. H.1,Vallis G. K.1

Affiliation:

1. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Abstract

Abstract As the ITCZ moves off the equator on an aquaplanet, the Hadley circulation transitions from an equinoctial regime with two near-symmetric, significantly eddy-driven cells to a monsoon-like regime with a strong, thermally direct cross-equatorial cell, intense low-latitude precipitation, and a weak summer hemisphere cell. Dynamical feedbacks appear to accelerate the transition. This study investigates the relevance of this behavior to monsoon onset by using primitive equation model simulations ranging from aquaplanets to more realistic configurations with Earth’s continents and topography. A change in the relationship between ITCZ latitude and overturning strength is identified once the ITCZ moves poleward of approximately 7°. Monsoon onset is associated with off-equatorial ascent in regions of nonnegligible planetary vorticity, and this is found to generate a vortex stretching tendency that reduces upper-level absolute vorticity. In an aquaplanet, this causes a transition to the cross-equatorial, thermally direct regime, intensifying the overturning circulation. Analysis of the zonal momentum budget suggests that a stationary wave, driven by topography and land–sea contrast, can trigger a similar transition in the more realistic model configuration, with the wave extending the ascent region of the Southern Hemisphere Hadley cell northward, and enhanced overturning then developing to the south. These two elements of the circulation resemble the East and South Asian monsoons.

Funder

Newton Fund

Leverhulme Trust

Natural Environment Research Council

Wolfson Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3