Contribution of Tropical Cyclones to Atmospheric Moisture Transport and Rainfall over East Asia

Author:

Guo Liang1,Klingaman Nicholas P.1,Vidale Pier Luigi1,Turner Andrew G.1,Demory Marie-Estelle1,Cobb Alison2

Affiliation:

1. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

2. Department of Physics, Imperial College, London, United Kingdom

Abstract

Abstract The coastal region of East Asia (EA) is one of the regions with the most frequent impacts from tropical cyclones (TCs). In this study, rainfall and moisture transports related to TCs are measured over EA, and the contribution of TCs to the regional water budget is compared with other contributors, especially the mean circulation of the EA summer monsoon (EASM). Based on ERA-Interim reanalysis (1979–2012), the trajectories of TCs are identified using an objective feature tracking method. Over 60% of TCs occur from July to October (JASO). During JASO, TC rainfall contributes 10%–30% of the monthly total rainfall over the coastal region of EA; this contribution is highest over the south/southeast coast of China in September. TCs make a larger contribution to daily extreme rainfall (above the 95th percentile): 50%–60% over the EA coast and as high as 70% over Taiwan Island. Compared with the mean EASM, TCs transport less moisture over EA. However, as the peak of the mean seasonal cycle of TCs lags two months behind that of the EASM, the moisture transported by TCs is an important source for the water budget over the EA region when the EASM withdraws. This moisture transport is largely performed by westward-moving TCs. These results improve understanding of the water cycle of EA and provide a useful test bed for evaluating and improving seasonal forecasts and coupled climate models.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3