A Preliminary Assessment of Using Spatiotemporal Lightning Patterns for a Binary Classification of Thunderstorm Mode

Author:

Miller Paul1,Ellis Andrew W.2,Keighton Stephen3

Affiliation:

1. Department of Geography, University of Georgia, Athens, Georgia

2. Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

3. National Weather Service Forecast Office, National Oceanic and Atmospheric Administration, Blacksburg, Virginia

Abstract

Abstract This study provides a preliminary, regional assessment of the viability of using spatiotemporal lightning patterns to classify storms into single- versus multi- and supercell storm modes. Total lightning flashes (intracloud and cloud-to-ground flashes) occurring during the afternoon and evening of the period May–August 2012 within an area of the central Appalachian Mountains region were grouped based on their spatial and temporal characteristics using single-linkage clustering. The resulting discrete thunderstorm clusters were characterized in terms of duration, motion, areal extent, and shape. These values were used to formulate four individual attribute scores representing the similarity to the expected values for a typical single-cell thunderstorm. The four scores were then combined into a storm index (SI) using relative weights determined through the analytic hierarchy process (AHP) performed on input from operational forecasters. Of the study days, 89 (72.4%) possessed appreciable lightning, of which 36 (40%) possessed a defined minimum amount of lightning activity required for further analysis. These 36 storm days were divided into two tiers according to the distribution of median daily SI values. The tier containing the 24 storm days (66.7%) with the largest median SI values possessed statistically significant smaller values of 0–6-km wind shear [13.8 knots (kt; 1 kt = 0.51 m s−1)] versus the 12 days in the lower tier of SI values (26.5 kt). This consistency between the total lightning-based classification scheme and increased vertical wind shear associated with lightning-defined multi- and supercells, also evident in synoptic atmospheric composites, lends credibility to the procedure.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3