An Artificial Neural Network for Lightning Prediction Based on Atmospheric Electric Field Observations

Author:

Bao RiyangORCID,Zhang Yaping,Ma Benedict J.ORCID,Zhang Zhuoyu,He Zhenghao

Abstract

Measuring the atmospheric electric field is of crucial importance for studying the discharge phenomena of thunderstorm clouds. If one is used to indicate the occurrence of a lightning event and zero to indicate the non-occurrence of the event, then a binary classification problem needs to be solved. Based on the established database of weather samples, we designed a lightning prediction system using deep learning techniques. First, the features of time-series data from multiple electric field measurement sites are extracted by a sparse auto encoder (SAE) to construct a visual picture, and a binary prediction of whether lightning occurs at a specific time interval is obtained based on the improved ResNet50. Then, the central location of lightning flashes is located based on the extracted features using a multilayer perceptron (MLP) model. The performance of the method yields satisfactory results with 88.2% accuracy, 92.2% precision rate, 81.5% recall rate, and 86.4% F1-score for weather samples, which is a significant improvement over traditional methods. Multiple spatial localization results for several minutes before and after can be used to know the specific area where lightning is likely to occur. All the above methods passed the reliability and robustness tests, and the experimental results demonstrate the effectiveness and superiority of the model in lightning short-time proximity warning.

Funder

China Southern Power Grid

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multiscale Attention Network for the Classification of Lightning Safety Risk Warnings;2024-07-03

2. An automated technique and decision support system for lightning early warning;International Journal of Environmental Science and Technology;2024-06-18

3. Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon;Nature Communications;2024-02-08

4. Techniques for lightning prediction: A review;Ukrainian Journal of Educational Studies and Information Technology;2023-12-30

5. An application of deep learning for lightning prediction in East Coast Malaysia;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3