An Evaluation of the GOES-16 Rapid Scan for Nowcasting in Southeastern Brazil: Analysis of a Severe Hailstorm Case

Author:

Ribeiro Bruno Z.1,Machado Luiz A. T.1,Huamán Ch. Joao H.1,Biscaro Thiago S.1,Freitas Edmilson D.2,Mozer Kathryn W.3,Goodman Steven J.4

Affiliation:

1. Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, São Paulo, Brazil

2. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil

3. NOAA/NESDIS/Office of Satellite and Product Operations, College Park, Maryland

4. GOES-R Program/TGA, Huntsville, Alabama

Abstract

Abstract The GOES-16 mesoscale domain sector (MDS) scans with 1-min intervals are used in this study to analyze a severe thunderstorm case that occurred in southeastern Brazil. The main objective is to evaluate the GOES-16 MDS rapid scans against the operational full-disk scans with lower temporal resolution for nowcasting. Data from a C-band radar, observed sounding, and a ground-based lightning network are also used in the analysis. A group of thunderstorms formed in the afternoon of 29 November 2017 in an environment of moderate convective available potential energy (CAPE) and deep-layer shear. The storms presented supercell characteristics and intense lightning activity with peak rates in excess of 150 flashes per 5 min. The satellite-derived trends with 1-min interval were skillful in detecting thunderstorm intensification, mainly in the developing stage. The decrease in cloud-top 10.35-μm brightness temperature was accompanied by increases in ice mass flux, concentration of small ice particles at cloud top, and storm depth. In the mature stage, there is no evident trend in the satellite-derived parameters that could indicate storm intensification, but the cluster area expands suggesting cloud-top divergence. The 1-min rapid scans indicate greater lead time to severe weather relative to 10- and 15-min-resolution imagery, but also presented numerous false alarms (indication of severe weather but no occurrence) due to oscillations in the satellite-derived parameters. The parameters calculated every 5 min presented better skill than 10 and 15 min and fewer false alarms than 1 min.

Funder

National Aeronautics and Space Administration

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3