Analysis of Mesoscale Atmospheric Flows above Mature Deep Convection Using Super Rapid Scan Geostationary Satellite Data

Author:

Apke Jason M.1,Mecikalski John R.1,Jewett Christopher P.2

Affiliation:

1. Department of Atmospheric Sciences, University of Alabama in Huntsville, Huntsville, Alabama

2. Earth Systems Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

AbstractSuper Rapid Scan Operations for the Geostationary Operational Environmental Satellite (GOES) R series (SRSOR) using GOES-14 have made experimentation with 1-min time-step data possible prior to the launch of the new satellite. A mesoscale atmospheric motion vector (mAMV) program is utilized in SRSOR with a Barnes analysis to produce objectively analyzed flow fields at the cloud tops of deep convection. Two nonsupercell and four supercell storm cases are analyzed. Data from the SRSOR mAMV analysis are compared with both multi-Doppler analyses when available and idealized convection cases within the Weather Research and Forecasting (WRF) Model framework. It is found that using SRSOR data provides several additional trackable targets to produce mAMVs in rapidly “bubbling” regions at the deep convective cloud-top level not previously available at lower temporal resolutions (<1 min). Results also show that supercell storm cases produce long-lived maxima in SRSOR cloud-top divergence (CTD) and “couplet” signatures in cloud-top vorticity (CTV), which when compared with idealized WRF Model simulations appear to form as a result of environmental horizontal vorticity tilting. Nonsupercell convection in contrast produced weaker, short-lived CTD signatures and no “CTV couplet” signatures. These case study results suggest that with SRSOR data it might be possible to uniquely identify supercells using only mAMV-derived flow fields.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3