Observations of Hail–Wind Ratios from Convective Storm Reports across the Continental United States

Author:

Bunkers Matthew J.1ORCID,Fleegel Steven R.2,Grafenauer Thomas3,Schultz Chauncy J.4,Schumacher Philip N.5

Affiliation:

1. NOAA/National Weather Service, Rapid City, South Dakota

2. NOAA/National Weather Service, Aberdeen, South Dakota

3. NOAA/National Weather Service, Grand Forks, North Dakota

4. NOAA/National Weather Service, Bismarck, North Dakota

5. NOAA/National Weather Service, Sioux Falls, South Dakota

Abstract

Abstract The objective of this study is to provide guidance on when hail and/or wind is climatologically most likely (temporally and spatially) based on the ratio of severe hail reports to severe wind reports, which can be used by National Weather Forecast (NWS) forecasters when issuing severe convective warnings. Accordingly, a climatology of reported hail-to-wind ratios (i.e., number of hail reports divided by the number of wind reports) for observed severe convective storms was derived using U.S. storm reports from 1955 to 2017. Owing to several temporal changes in reporting and warning procedures, the 1996–2017 period was chosen for spatiotemporal analyses, yielding 265 691 hail and 294 449 wind reports. The most notable changes in hail–wind ratios occurred around 1996 as the NWS modernized and deployed new radars (leading to more hail reports relative to wind) and in 2010 when the severe hail criterion increased nationwide (leading to more wind reports relative to hail). One key finding is that hail–wind ratios are maximized (i.e., relatively more hail than wind) during the late morning through midafternoon and in the spring (March–May), with geographical maxima over the central United States and complex/elevated terrain. Otherwise, minimum ratios occur overnight, during the late summer (July–August) as well as November–December, and over the eastern United States. While the results reflect reporting biases (e.g., fewer wind than hail reports in low-population areas but more wind reports where mesonets are available), meteorological factors such as convective mode and cool spring versus warm summer environments also appear associated with the hail–wind ratio climatology.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. The characteristics of United States hail reports: 1955–2014;Allen;Electron. J. Severe Storms Meteor.,2015

2. VIL density as a hail indicator;Amburn;Wea. Forecasting,1997

3. A climatology of quasi-linear convective systems and their hazards in the United States;Ashley;Wea. Forecasting,2019

4. A radar-based assessment of the detectability of giant hail;Blair;Electron. J. Severe Storms Meteor.,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3