A Machine Learning Approach to Improve the Usability of Severe Thunderstorm Wind Reports

Author:

Tirone Elizabeth1,Pal Subrata1,Gallus William A.1,Dutta Somak1,Maitra Ranjan1,Newman Jennifer1,Weber Eric1,Jirak Israel2

Affiliation:

1. Iowa State University, Ames, Iowa;

2. NOAA/Storm Prediction Center, Norman, Oklahoma

Abstract

Abstract Many concerns are known to exist with thunderstorm wind reports in the National Center for Environmental Information Storm Events Database, including the overestimation of wind speed, changes in report frequency due to population density, and differences in reporting due to damage tracers. These concerns are especially pronounced with reports that are not associated with a wind speed measurement, but are estimated, which make up almost 90% of the database. We have used machine learning to predict the probability that a severe wind report was caused by severe intensity wind, or wind ≥ 50 kt (∼25 m s−1). A total of six machine learning models were trained on 11 years of measured thunderstorm wind reports, along with meteorological parameters, population density, and elevation. Objective skill metrics such as the area under the ROC curve (AUC), Brier score, and reliability curves suggest that the best performing model is the stacked generalized linear model, which has an AUC around 0.9 and a Brier score around 0.1. The outputs from these models have many potential uses such as forecast verification and quality control for implementation in forecast tools. Our tool was evaluated favorably at the Hazardous Weather Testbed Spring Forecasting Experiments in 2020, 2021, and 2022.

Publisher

American Meteorological Society

Reference43 articles.

1. Introduction to Machine Learning.;Alpaydin, E.,2014

2. A correlated topic model of science;Blei, D. M.,2007

3. Latent Dirichlet allocation;Blei, D. M.,2003

4. Bothwell, P. D., J. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.

5. Bowman, K. P., and C. R. Homeyer, 2017: GridRad—Three-dimensional gridded NEXRAD WSR-88D radar data. NCAR CISL Research Data Archive, accessed 8 August 2020, https://doi.org/10.5065/D6NK3CR7.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3