On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment

Author:

Fonseca Ricardo1,Temimi Marouane1,Thota Mohan Satyanarayana12,Nelli Narendra Reddy1,Weston Michael John1,Suzuki Kentaroh3,Uchida Junya3,Kumar Kondapalli Niranjan32,Branch Oliver4,Wehbe Youssef15,Al Hosari Taha5,Al Shamsi Noor5,Shalaby Abdeltawab5

Affiliation:

1. a Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

2. c National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

3. b Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

4. d Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

5. e National Center of Meteorology, Abu Dhabi, United Arab Emirates

Abstract

Abstract The Weather Research and Forecasting (WRF) Model and the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) are forced with the Global Forecast System (GFS) data and run over the United Arab Emirates (UAE) for two 4-day periods: one in the cold season (16–18 December 2017) and another in the warm season (13–15 April 2018). The models’ performance is evaluated against four observational datasets: weather station observations, eddy-covariance flux measurements at Al Ain, microwave radiometer–derived temperature profile, and twice-daily radiosonde measurements at Abu Dhabi. An overestimation of the daily mean air temperature by 1°–3°C is noticed for both models and periods. This warm bias is attributed to the reduced cloud cover and resulting increased surface downward shortwave radiation flux. A comparison with the eddy-covariance data suggested that both models also underestimate the observed albedo. However, when the models predict heavier amounts of precipitation, they tend to be colder than observations, typically by 2°–3°C. NICAM and WRF overpredict the strength of the near-surface wind speed at all weather stations by roughly 1–3 m s−1, which has been attributed to a poor representation of its subgrid-scale fluctuations and surface drag parameterization. WRF tends to be wetter and NICAM drier than the station observations, possibly because of differences in the cloud microphysics schemes. While the performance of both models for the near-surface fields is comparable, NICAM outperforms WRF in the simulation of vertical profiles of temperature, relative humidity, and wind speed, being able to partially correct some of the biases in the GFS data.

Funder

UAEREP

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3