A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding

Author:

Yang Kun1,Paramygin Vladimir A.1,Sheng Y. Peter1

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida

Abstract

AbstractA prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal inundation map on a high-resolution grid in 1 min (reference system Intel Core i7–3770K). The foundation of the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated by a robust storm surge modeling system, Curvilinear-Grid Hydrodynamics in 3D (CH3D-SSMS). The RFMS uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge database, which considers tens of thousands of combinations of five landfall parameters of storms: central pressure deficit, radius to maximum wind, forward speed, heading direction, and landfall location. The RFMS is applied to southwest Florida using data from Hurricane Charley in 2004 and Hurricane Irma in 2017, and to the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water mark data. The RFMS results agree well with observation and direct simulation of the high-resolution CH3D-SSMS. The RFMS can be used for real-time forecasting during a hurricane or “what-if” scenarios for mitigation planning and preparedness training, or to produce a probabilistic flood map. The RFMS can provide more accurate surge prediction with uncertainties if NHC can provide more accurate storm forecasts in the future. By incorporating storms for future climate and sea level rise, the RFMS could be used to generate future flood maps for coastal resilience and adaptation planning.

Funder

National Oceanic and Atmospheric Administration

Climate Program Office

Florida Sea Grant, University of Florida

IOOS/NOAA

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. Blake, E., C. W.Landsea, and E. J.Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 47 pp., http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.

2. An integrated scenario ensemble-based framework for hurricane evacuation modeling: Part 2–Hazard modeling;Blanton;Risk Anal.,2018

3. Street-scale modeling of storm surge inundation along the New Jersey Hudson River waterfront;Blumberg;J. Atmos. Oceanic Technol.,2015

4. A third-generation wave model for coastal regions: 1. Model description and validation;Booij;J. Geophys. Res.,1999

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3