A Simple Mechanism for ENSO Residuals and Asymmetry

Author:

Schopf Paul S.1,Burgman Robert J.1

Affiliation:

1. Climate Dynamics Program, School of Computational Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract A simple mechanism is offered that accounts for a change in the long-term (decadal scale) mean of ocean temperatures as the El Niño–Southern Oscillation (ENSO) amplitude changes. It is intended as an illustration of a kinematic effect of oscillating a nonlinear temperature profile with finite-amplitude excursions that will cause the Eulerian time mean temperature to rise (fall) where the curvature of the temperature is positive (negative) as the amplitude of the oscillations increases. This mechanism is found to be able to mimic observed changes in the mean sea surface temperatures in the Pacific between the 1920s, 1960s, and 1990s due to the changing ENSO amplitude. The effects alter both the calculated mean surface temperatures and the time mean temperatures at depth. It also results in a skewness of the temperature distribution that shares many properties with the observed SST. In this model, the time-local gradients of temperature never change if referenced to a single isotherm (i.e., the Lagrangian description is one of DT/Dt = 0). This implies that changes in the amplitude of ENSO will have no influence on the stability of the underlying system, and that the simple Eulerian decadal mean temperature structure has no predictive value. This is in direct contrast to recent work that ascribes a change in ENSO statistics as due to a change in the background state.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3