Redefined background state in the tropical Pacific resolves the entanglement between the background state and ENSO

Author:

Huang PingORCID,Chen YueORCID,Li JinbaoORCID,Yan HongORCID

Abstract

AbstractUnderstanding the co-variability between the El Niño–Southern Oscillation (ENSO) and the background state in the tropical Pacific is critical for projecting future ENSO. The difficulty is rooted in a circular logic that the background state routinely defined by multi-decadal mean modulates, and is modulated by, ENSO. This circularity arises due to the asymmetry between El Niño and La Niña, resulting in a non-zero mean, referred to as the ENSO rectification effect. Here, we develop a method based on Box-Cox normalization to define the tropical Pacific background state and its associated anomalies, which removes the ENSO rectification effect and is referred to as the normalized mean state. The normalized mean state accurately quantifies ENSO-related anomalies, ENSO asymmetry, and the ENSO rectification effect. It is evident in both observations and model simulations that the normalized mean state has a clear asymmetric impact on the amplitude of ENSO. A warm background state weakens El Niño but strengthens La Niña through two key processes: the nonlinear response of precipitation to SST and oceanic zonal advection feedback. The normalized mean state successfully solves the circular reasoning fallacy resulting from ENSO asymmetry and offers a framework to study ENSO and tropical climate dynamics with far-reaching impacts on global climate.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3