The Impact of Mountain Waves on an Idealized Baroclinically Unstable Large-Scale Flow

Author:

Menchaca Maximo Q.1,Durran Dale R.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract The feedback of mountain waves and low-level blocking on an idealized baroclinically unstable wave passing over an isolated ridge is examined through numerical simulation. Theoretical analysis implies that the volume-integrated perturbation momentum budget is dominated by mean-flow deceleration, the divergence of vertical fluxes of horizontal momentum, and the Coriolis force acting on the perturbation ageostrophic wind. These do indeed appear as the dominant balances in numerically computed budgets averaged over layers containing 1) wave breaking in the lower stratosphere, 2) flow blocking with wave breaking near the surface, and 3) a region of pronounced horizontally averaged mean-flow deceleration in the upper troposphere where there is no wave breaking. The local impact of wave breaking on the jet in the lower stratosphere is dramatic, with winds in the jet core reduced by almost 50% relative to the no-mountain case. Although it is the layer with the strongest average deceleration, the local patches of decelerated flow are weakest in the upper troposphere. The cross-mountain pressure drag over a 2-km-high ridge greatly exceeds the vertical momentum flux at mountain-top level because of low-level wave breaking, blocking, and lateral flow diversion. These pressure drags and the low-level momentum fluxes are significantly different from corresponding values computed for simulations with steady forcing matching the instantaneous conditions over the mountain in the evolving large-scale flow.

Funder

Directorate for Geosciences

National Science Foundation

National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Mountain pressure drag during PYREX;Bessemoulin;Contrib. Atmos. Phys.,1993

2. The atmospheric momentum budget over a major mountain range: First results of the PYREX field program;Bougeault;Ann. Geophys.,1993

3. PYREX: A summary of findings;Bougeault;Bull. Amer. Meteor. Soc.,1997

4. Momentum transport by gravity waves;Bretherton;Quart. J. Roy. Meteor. Soc.,1969

5. Mountain-wave momentum flux in an evolving synoptic-scale flow;Chen;J. Atmos. Sci.,2005

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3