The Influence of Gravity Waves on the Slope of the Kinetic Energy Spectrum in Simulations of Idealized Midlatitude Cyclones

Author:

Menchaca Maximo Q.1,Durran Dale R.1ORCID

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade.

Funder

Directorate for Geosciences

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3