Energetics of Eddy–Mean Flow Interactions in the Gulf Stream Region

Author:

Kang Dujuan1,Curchitser Enrique N.1

Affiliation:

1. Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

AbstractA detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a high-resolution multidecadal regional ocean model simulation. The energy equations for the time-mean and time-varying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3