Energetics of the Global Ocean: The Role of Layer-Thickness Form Drag

Author:

Aiki Hidenori1,Richards Kelvin J.2

Affiliation:

1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, and Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

2. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Understanding the role of mesoscale eddies in the global ocean is fundamental to gaining insight into the factors that control the strength of the circulation. This paper presents results of an analysis of a high-resolution numerical simulation. In particular, the authors perform an analysis of energetics in density space. Such an approach clearly demonstrates the role of layer-thickness form drag (residual effects of hydrostatic pressure perturbations), which is hidden in the classical analysis of the energetics of flows. For the first time in oceanic studies, the global distribution of layer-thickness form drag is determined. This study provides direct evidence to verify some basic characteristics of layer-thickness form drag that have often been assumed or speculated about in previous theoretical studies. The results justify most of the previous assumptions and speculations, including those associated with (i) the presence of an oceanic energy cycle explaining the relationship between layer-thickness form drag and wind forcing, (ii) the manner in which layer-thickness form drag removes the energy of vertically sheared geostrophic currents, and (iii) the reason why the work of layer-thickness form drag nearly balances the work of eddy-induced overturning circulation in each vertical column. However, the result of the analysis disagrees with speculation in previous studies that the layer-thickness form drag in the Antarctic Circumpolar Current is the agent that transfers the wind-induced momentum near the sea surface downward to the bottom layers. The authors present a new interpretation: the layer-thickness form drag reduces (and thereby cancels) the vertical shear resulting from the eddy-induced overturning circulation (rather than the vertical shear resulting from the surface wind stress). This interpretation is consistent with the results of the energy analysis conducted in this study.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3