A Strong Linkage between Seasonal Crop Growth and Groundwater Storage Variability in India

Author:

Asoka Akarsh1,Mishra Vimal1

Affiliation:

1. a Civil Engineering and Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India

Abstract

AbstractGroundwater is rapidly depleting in India primarily because of pumping for irrigation. However, the crucial role of crop growth at annual and seasonal time scales in groundwater storage variability remains mostly unexplored. Using the data from the Gravity Recovery Climate Experiment (GRACE) satellites and well observations, we show that crop growth is negatively correlated with groundwater storage at annual and seasonal time scales in north India. Precipitation is positively associated with groundwater storage variability at the yearly time scale in north-central India (NCI) and south India (SI). In contrast, precipitation is negatively correlated with groundwater storage from the GRACE satellites in northwest India (NWI). The negative correlation between precipitation and groundwater from the GRACE in NWI is primarily due to groundwater depletion due to anthropogenic pumping from deep aquifers. Precipitation and groundwater storage from the well observations are positively correlated in all the three regions, indicating the influence of precipitation on shallow aquifers. Analysis of the two main crop growing seasons (Rabi and Kharif) showed that crop growth is negatively related to groundwater storage in both Kharif (June–September) and Rabi seasons in north India (NWI and NCI). Groundwater contributes more than precipitation in NCI during the Kharif season and in NWI and SI during the Rabi season. Granger’s causality test showed that groundwater is a significant contributor to crop growth in NWI and NCI in both Kharif and Rabi seasons. Our results highlight the need for agricultural water management in both the crop growing seasons in north India for reducing the rapid groundwater depletion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3