Affiliation:
1. State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2. College of Geographic Sciences, Changchun Normal University, Changchun 130032, China
Abstract
Clarifying the evolution pattern of groundwater storage (GWS) is crucial for exploring the amount of available water resources at a regional or basin scale. Currently, the groundwater resources of Northeast China have been extensively exploited, but only limited studies have assessed the extent of GWS depletion and its driving mechanisms. In this study, the groundwater storage anomaly (GWSA) in the black soil region of Northeast China was explored based on the Gravity Recovery and Climate Experiment (GRACE) satellite combined with the Global Land Data Assimilation System (GLDAS) hydrological model. The results show that from 2002 to 2021, the overall GWSA decreased (−0.4204 cm/a), and specifically, the average rates of decrease in Heilongjiang, Jilin, and Liaoning Provinces were −0.2786, −0.5923, and −0.6694 cm/a, respectively, with the eastern, southern, and central parts of Heilongjiang, Jilin, and Liaoning Provinces losing seriously. Especially the GWSA deficit trend can reach −0.7471 cm/a in southern Jilin Province. The GWSA deficits in the three provinces from April to September were greater than 0.40 cm/a, while the deficit values from January to March and from October to December were less than 0.40 cm/a. This study is the first to quantitatively analyze the GWSA and its influencing factors in Northeast China for 2002–2021. The results of the study help clarify the differences in the spatial and temporal distribution of groundwater resources and their driving mechanisms in the northeastern black soil regions and provide a reference for the conservation and sustainable utilization of groundwater resources in the black soil region.
Funder
Chinese Academy of Sciences
Jilin Association of Science and Technology
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献