CO2 Emissions Associated with Groundwater Storage Depletion in South Korea: Estimation and Vulnerability Assessment Using Satellite Data and Data-Driven Models

Author:

Seo Jae Young1,Lee Sang-Il1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Groundwater is crucial in mediating the interactions between the carbon and water cycles. Recently, groundwater storage depletion has been identified as a significant source of carbon dioxide (CO2) emissions. Here, we developed two data-driven models—XGBoost and convolutional neural network–long short-term memory (CNN-LSTM)—based on multi-satellite and reanalysis data to monitor CO2 emissions resulting from groundwater storage depletion in South Korea. The data-driven models developed in this study provided reasonably accurate predictions compared with in situ groundwater storage anomaly (GWSA) observations, identifying relatively high groundwater storage depletion levels in several regions over the past decade. For each administrative region exhibiting a decreasing groundwater storage trend, the corresponding CO2 emissions were quantified based on the predicted GWSA and respective bicarbonate concentrations. For 2008–2019, XGBoost and CNN-LSTM estimated CO2 emissions to be 0.216 and 0.202 MMTCO2/year, respectively. Furthermore, groundwater storage depletion vulnerability was assessed using the entropy weight method and technique for order of preference by similarity to ideal solution (TOPSIS) to identify hotspots with a heightened potential risk of CO2 emissions. Western South Korean regions were particularly classified as high or very high regions and susceptible to groundwater storage depletion-associated CO2 emissions. This study provides a foundation for developing countermeasures to mitigate accelerating groundwater storage depletion and the consequent rise in CO2 emissions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference66 articles.

1. IPCC (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

2. Strategies for Mitigation of Climate Change: A Review;Fawzy;Environ. Chem. Lett.,2020

3. Energy Budget Constraints on Climate Sensitivity in Light of Inconstant Climate Feedbacks;Armour;Nat. Clim. Chang.,2017

4. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink;Raupach;Science,2015

5. Global Carbon Dioxide Emissions from Inland Waters;Raymond;Nature,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3