Observations of Flow Separation and Mixing around the Northern Palau Island/Ridge

Author:

Wijesekera Hemantha W.1,Wesson Joel C.1,Wang David W.1,Teague William J.2,Hallock Z. R.2

Affiliation:

1. Naval Research Laboratory, Stennis Space Center, Mississippi

2. NVision Solutions, Inc., Bay St. Louis, Mississippi

Abstract

AbstractTurbulent mixing adjacent to the Velasco Reef and Kyushu–Palau Ridge, off northern Palau in the western equatorial Pacific Ocean, is examined using shipboard and moored observations. The study focuses on a 9-day-long, ship-based microstructure and velocity survey, conducted in November–December 2016. Several sections (9–15 km in length) of microstructure, hydrographic, and velocity fields were acquired over and around the reef, where water depths ranged from 50 to 3000 m. Microstructure profiles were collected while steaming slowly either toward or away from the reef, and underway current surveys were conducted along quasi-rectangular boxes with side lengths of 5–10 km. Near the reef, both tidal and subtidal motions were important, while subtidal motions were stronger away from the reef. Vertical shears of currents and mixing were stronger on the northern and eastern flanks of the reef than on the western flanks. High turbulent kinetic energy dissipation rates, 10−6–10−4W kg−1, and large values of eddy diffusivities, 10−4–10−2m2s−1, with strong turbulent heat fluxes, 100–500 W m−2, were found. Currents flowing along the eastern side separated at the northern tip of the reef and generated submesoscale cyclonic vorticity of about 2–4 times the planetary vorticity. The analysis suggests that a torque, imparted by the turbulent bottom stress, generated the cyclonic vorticity at the northern boundary. The northern reef is associated with high vertical transports resulting from both submesoscale flow convergences and energetic mixing. Even though the area around Palau represents a small footprint of the ocean, vertical velocities and mixing rates are several orders magnitude larger than in the open ocean.

Funder

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Subject

Oceanography

Reference56 articles.

1. Lee region of Gran Canaria;Barton;J. Geophys. Res.,2000

2. Eddy and deep chlorophyll maximum response to wind-shear in the lee of Gran Canaria;Basterretxea;Deep-Sea Res. I,2002

3. Tilted baroclinic tidal vorticies;Canals;J. Phys. Oceanogr.,2009

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3