An Evaluation of NDFD Weather Forecasts for Wildland Fire Behavior Prediction

Author:

Page Wesley G.1,Wagenbrenner Natalie S.1,Butler Bret W.1,Forthofer Jason M.1,Gibson Chris2

Affiliation:

1. Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana

2. National Weather Service Forecast Office, Missoula, Montana

Abstract

Abstract Wildland fire managers in the United States currently utilize the gridded forecasts from the National Digital Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large wildfires. However, little is known about the NDFDs performance in remote locations with complex topography for weather variables important for fire behavior prediction, including air temperature, relative humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone locations across the conterminous United States during periods with the potential for active fire spread using the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed well with RMSEs of about 2°C and 10%–11%, respectively. However, wind speed was increasingly underpredicted when observed wind speeds exceeded about 4 m s−1, with MFB and MBE values of approximately −15% and −0.5 m s−1, respectively. The importance of accurate wind speed forecasts in terms of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve “good” surface head fire rate-of-spread predictions were estimated as ±20%–30% of the observed wind speed. Weather station location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast error, although the relatively low variance explained by the model (~37%) suggests that other variables are likely to be important. Based on these results it is suggested that wildland fire managers should use caution when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.

Funder

National Wildfire Coordinating Group, Fire Behavior Subcommittee

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference66 articles.

1. Response of free-burning fires to nonsteady wind;Albini;Combust. Sci. Technol.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3