On the Linkages between the Tropospheric Isentropic Slope and Eddy Fluxes of Heat during Northern Hemisphere Winter

Author:

Thompson David W. J.1,Birner Thomas1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Previous studies have demonstrated the key role of baroclinicity and thus the isentropic slope in determining the climatological-mean distribution of the tropospheric eddy fluxes of heat. Here the authors examine the role of variability in the isentropic slope in driving variations in the tropospheric eddy fluxes of heat about their long-term mean during Northern Hemisphere winter. On month-to-month time scales, the lower-tropospheric isentropic slope and eddy fluxes of heat are not significantly correlated when all eddies are included in the analysis. But the isentropic slope and heat fluxes are closely linked when the data are filtered to isolate the fluxes due to synoptic (<10 days) and low-frequency (>10 days) time scale waves. Anomalously steep isentropic slopes are characterized by anomalously poleward heat fluxes by synoptic eddies but anomalously equatorward heat fluxes by low-frequency eddies. Lag regressions based on daily data reveal that 1) variations in the isentropic slope precede by several days variations in the heat fluxes by synoptic eddies and 2) variations in the heat fluxes due to both synoptic and low-frequency eddies precede by several days similarly signed variations in the momentum flux at the tropopause level. The results suggest that seemingly modest changes in the tropospheric isentropic slope drive significant changes in the synoptic eddy heat fluxes and thus in the generation of baroclinic wave activity in the lower troposphere. The linkages have implications for understanding the extratropical tropospheric eddy response to a range of processes, including anthropogenic climate change, stratospheric variability, and extratropical sea surface temperature anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3