Changes in Northern Hemisphere extra-tropical cyclone frequency following volcanic eruptions

Author:

Andreasen L SORCID,Cornér JORCID,Abbott P M,Sinclair V AORCID,Riede F,Timmreck CORCID

Abstract

Abstract Explosive volcanic eruptions are well known to influence Earth’s temperature. Changes in Earth’s temperature can affect temperature gradients which in turn could affect the isentropic slope and hence Northern Hemisphere high and mid-latitude weather. Yet, the possible influence of volcanic eruptions on these atmospheric circulation patterns and the potential spatial extent are not well understood. To address this issue, we pursue two independent lines of evidence. Firstly, we simulate volcanic eruptions with the MPI-ESM1.2 Earth System Model and use the TRACK algorithm to explore how extra-tropical cyclone (ETC) frequency is affected in the model experiments. Secondly, we query the Greenland ice core NEEM-2011-S1 for indications of increased Northern Hemisphere ETC frequency correlating with evidence for explosive volcanism by comparing the storm proxies sodium and calcium; with the eruption proxy sulphur. Both the model and proxy evidence suggest that large explosive volcanic eruptions increase storminess around the location of the ice core. Furthermore, the simulations indicate that the number of ETCs increases in the subtropics and at high latitudes, while they decrease in the mid-latitudes. A detailed interrogation of the simulated eruptions reveals that increases in cyclone frequency are linked to steepening of the isentropic slope due to a larger meridional temperature gradient and to a lower tropopause. The steepening is driven by a combination of warming of the tropical stratosphere from absorption of longwave radiation by volcanic aerosols and surface cooling due to the scattering of sunlight by the same aerosols, whereas the lower tropopause may be attributed to a warmer stratosphere.

Funder

Academy of Finland

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Deutsches Klimarechenzentrum

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3