A Linear Theory of Three-Dimensional Land–Sea Breezes

Author:

Jiang Qingfang1

Affiliation:

1. Naval Research Laboratory, Monterey, California

Abstract

Abstract Land–sea breezes (LSBs) induced by diurnal differential heating are examined using a three-dimensional linear model employing fast Fourier transform with emphasis on the complex coastline shape and geometry, the earth’s rotation, and background wind effects. It has been demonstrated that the low-level vertical motion associated with LSB can be significantly enhanced over a bay (peninsula) because of convergence of perturbations induced by differential heating along a seaward concave (convex) coastline. The dependence of surface winds and vertical motion patterns and their evolutions on the coastline geometries such as the width and the aspect ratio of the bay, the earth’s rotation, and the background winds are investigated. The LSB induced by an isolated tropical island is characterized by onshore flow and ascent over the island in the afternoon to early evening, with a reversal of direction from midnight to early morning. The diurnal heating–induced vertical motion is greatly enhanced over the island and weakened offshore because of the convergence and divergence of perturbations. In the presence of background flow, stronger diurnal perturbations are found at the downwind side of the island, which can extend far downstream associated with inertia–gravity waves.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Sea-breeze observations and modeling: A review;Abbs;Aust. Meteor. Mag.,1992

2. The Santa Cruz eddy. Part II: Mechanisms of formation;Archer;Mon. Wea. Rev.,2005

3. The Santa Cruz eddy. Part I: Observations and statistics;Archer;Mon. Wea. Rev.,2005

4. Numerical modelling of the offshore extent of sea breezes;Arritt;Quart. J. Roy. Meteor. Soc.,1989

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3