A Linear Theory of Local Thermal Circulations

Author:

Li Yaokun1ORCID,Chao Jiping2

Affiliation:

1. College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. National Marine Environmental Forecasting Center, Beijing 100081, China

Abstract

The dynamics of local thermal circulations (LTCs) are examined by constructing a linear theory based on Boussinesq equations in the planetary boundary layer (PBL). Linear theory arranges LTCs into a sixth-order partial differential equation of temperature, which can be solved by using the Fourier transform and inverse Fourier transform. The analytic solution suggests that the horizontal distribution of the temperature anomaly is basically determined by surface heating, while the vertical distribution of the temperature anomaly is a combination of exponential decay and an Ekman spiral. For shallow PBL cases where the Ekman elevation is much smaller than the vertical scale of motion, the higher-order partial differential terms that represent the Ekman spiral structure can be ignored so that the equations reduce to a second-order partial differential equation. Compared with the numerical results, this so-called low-order approximation does not induce dramatic errors in the temperature distribution. However, to avoid distortion in the forced atmospheric circulation, the eddy viscosity in the motion equations should be replaced with the Rayleigh form, which is the common practice in LTCs. For deep PBL cases where the Ekman elevation is comparable to the vertical scale of motion, both the exponential decay and Ekman spiral structure play roles in the forced atmospheric circulation. The most significant influence is that there exist three additional compensating forced circulation cells that surround the direct forced circulation cell.

Funder

National Natural Science Foundation of China

National Basis Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3