Moist Hadley Circulation: Possible Role of Wave–Convection Coupling in Aquaplanet Experiments

Author:

Horinouchi Takeshi1

Affiliation:

1. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

Abstract

Abstract Aquaplanet simulations for a given sea surface temperature (SST) are conducted to elucidate possible roles of transient variability in the Hadley circulation and the intertropical convergence zone (ITCZ). Their roles are best illustrated with globally uniform SSTs. For such SSTs, an ITCZ and a Hadley circulation that are nearly equatorially symmetric emerge spontaneously. Their strength varies over a wide range from being faint to climatologically significant depending on a tunable parameter of the model’s cumulus parameterization. In some cases asymmetric Hadley circulations formed along with long-lived tropical cyclones. The tunable parameter affects the transient variability of tropical precipitation. In the runs in which well-defined near-symmetric ITCZs formed, tropical precipitation exhibited clear signatures of convectively coupled equatorial waves. The waves can explain the concentration of precipitation to the equatorial region, which induces the Hadley circulation. Also, the meridional structures of simulated ITCZs are consistent with the distribution of convergence/divergence associated with dominant equatorial wave modes. Even when the pole–equator temperature gradient is introduced, the dependence of the strength of the circulation to transient disturbances remains. Therefore, transient variability may have a broader impact on tropical climate and its numerical modeling than has been thought. The reason that a wide variety of circulation is possible when the SST gradient is weak is because the distribution of latent heating can be interactively adjusted while a circulation is formed. Angular momentum budget does not provide an effective thermodynamic constraint, since baroclinic instability redistributes the angular momentum.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3