An Observational Study of Vertical Eddy Diffusivity in the Hurricane Boundary Layer

Author:

Zhang Jun A.1,Drennan William M.2

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

2. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract Although vertical eddy diffusivity or viscosity has been extensively used in theoretical and numerical models simulating tropical cyclones, little observational study has documented the magnitude of the eddy diffusivity in high-wind conditions (>20 m s−1) until now. Through analyzing in situ aircraft data that were collected in the atmospheric boundary layer of four intense hurricanes, this study provides the first estimates of vertical distributions of the vertical eddy diffusivities for momentum, sensible heat, and latent heat fluxes in the surface wind speed range between 18 and 30 m s−1. In this work, eddy diffusivity is determined from directly measured turbulent fluxes and vertical gradients of the mean variable, such as wind speed, temperature, and humidity. The analyses show that the magnitudes of vertical eddy diffusivities for momentum and latent heat fluxes are comparable to each other, but the eddy diffusivity for sensible heat flux is much smaller than that for the latent heat flux. The vertical distributions of the eddy diffusivities are generally alike, increasing from the surface to a maximum value within the thermodynamic mixed layer and then deceasing with height. The results indicate also that momentum and latent heat are mainly transferred downgradient of the mean flow and that countergradient transport of the sensible heat may exist. The observational estimates are compared with the eddy diffusivities derived from different methods as used in planetary boundary layer (PBL) parameterization schemes in numerical models as well as ones used in previous observational studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3