The Role of Turbulence in an Intense Tropical Cyclone: Momentum Diffusion, Eddy Viscosities, and Mixing Lengths

Author:

Oguejiofor Chibueze N.1ORCID,Bryan George H.2,Rotunno Richard2,Sullivan Peter P.2,Richter David H.1

Affiliation:

1. a University of Notre Dame, South Bend, Indiana

2. b NSF National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Improved representation of turbulent processes in numerical models of tropical cyclones (TCs) is expected to improve intensity forecasts. To this end, the authors use a large-eddy simulation (with 31-m horizontal grid spacing) of an idealized category 5 TC to understand the role of turbulent processes in the inner core of TCs and their role on the mean intensity. Azimuthally and temporally averaged budgets of the momentum fields show that TC turbulence acts to weaken the maximum tangential velocity, diminish the strength of radial inflow into the eye, and suppress the magnitude of the mean eyewall updraft. Turbulent flux divergences in both the vertical and radial directions are shown to influence the TC mean wind field, with the vertical being dominant in most of the inflowing boundary layer and the eyewall (analogous to traditional atmospheric boundary layer flows), while the radial becomes important only in the eyewall. The validity of the downgradient eddy viscosity hypothesis is largely confirmed for mean velocity fields, except in narrow regions which generally correspond to weak gradients of the mean fields, as well as a narrow region in the eye. This study also provides guidance for values of effective eddy viscosities and vertical mixing length in the most turbulent regions of intense TCs, which have rarely been measured observationally. A generalized formulation of effective eddy viscosity (including the Reynolds normal stresses) is presented. Significance Statement This study uses a turbulence-resolving simulation of a category 5 tropical cyclone to understand the role of turbulence in intense storms. Results show that turbulence clearly modulates storm structure and intensity. This study provides guidance for the values of turbulent quantities (which are usually parameterized in comparatively coarse operational TC forecast models) in scarcely observed regions of intense storms. Furthermore, a complete formulation of the effective eddy viscosities is proposed, incorporating contributions from typically ignored Reynolds normal stress terms.

Funder

Office of Naval Research Global

Publisher

American Meteorological Society

Reference116 articles.

1. Thirty years of tropical cyclone research with the NOAA P-3 aircraft;Aberson, S. D.,2006a

2. Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind;Aberson, S. D.,2006b

3. An extreme event in the eyewall of Hurricane Felix on 2 September 2007;Aberson, S. D.,2017

4. Observed kinematic and thermodynamic structure in the hurricane boundary layer during intensity change;Ahern, K.,2019

5. Tropical cyclone data assimilation with Coyote uncrewed aircraft system observations, very frequent cycling, and a new online quality control technique;Aksoy, A.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Tropical and Extratropical Cyclones on Future U.S. Offshore Wind Energy;Bulletin of the American Meteorological Society;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3