Effects of Parameterized Diffusion on Simulated Hurricanes

Author:

Rotunno Richard1,Bryan George H.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract In this study the authors analyze and interpret the effects of parameterized diffusion on the nearly steady axisymmetric numerical simulations of hurricanes presented in a recent study. In that study it was concluded that horizontal diffusion was the most important control factor for the maximum simulated hurricane intensity. Through budget analysis it is shown here that horizontal diffusion is a major contributor to the angular momentum budget in the boundary layer of the numerically simulated storms. Moreover, a new scale analysis recognizing the anisotropic nature of the parameterized model diffusion shows why the horizontal diffusion plays such a dominant role. A simple analytical model is developed that captures the essence of the effect. The role of vertical diffusion in the boundary layer in the aforementioned numerical simulations is more closely examined here. It is shown that the boundary layer in these simulations is consistent with known analytical solutions in that boundary layer depth increases and the amount of “overshoot” (maximum wind in excess of the gradient wind) decreases with increasing vertical diffusion. However, the maximum wind itself depends mainly on horizontal diffusion and is relatively insensitive to vertical diffusion; the overshoot variation with vertical viscosity mainly comes from changes in the gradient wind with vertical viscosity. The present considerations of parameterized diffusion allow a new contribution to the dialog in the literature on the meaning and interpretation of the Emanuel potential intensity theory.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3