Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events

Author:

Blume Christian1,Matthes Katja1,Horenko Illia2

Affiliation:

1. Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam, and Institute for Meteorology, Free University of Berlin, Berlin, Germany

2. Institute of Computational Science, University of Lugano (USI), Lugano, Switzerland

Abstract

Abstract Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings, using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warmings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric warming events independently of a particular pressure level. In contrast to classification methods based on the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of a binary measure, it provides continuous conditional probabilities for each warming event representing the amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the atmospheric factors is estimated. It is shown how marginalized probability distributions can give insights into the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF (ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3