Zonal Asymmetries, Teleconnections, and Annular Patterns in a GCM

Author:

Cash Benjamin A.1,Kushner Paul J.2,Vallis Geoffrey K.3

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

2. Department of Physics, University of Toronto, Toronto, Ontario, Canada

3. Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Abstract

Abstract The influence of zonally asymmetric boundary conditions on the leading modes of variability in a suite of atmospheric general circulation models is investigated. The set of experiments consists of nine model configurations, with varying degrees and types of zonal asymmetry in their boundary conditions. The structure of the leading EOF varies with the zonal asymmetry of the base state for each model configuration. In particular, a close relationship is found between the structure of the EOF and the model storm tracks. An approximately linear relationship is found to hold between the magnitude of the zonal asymmetry of the leading EOF and of the storm tracks in the models. It is shown that this linear relationship extends to the observations. One-point correlation maps centered on the regions where the EOFs reach their maximum amplitude show similar structures for all configurations. These structures consist of a north–south dipole, resembling the observed structure of the North Atlantic Oscillation (NAO). They are significantly more zonally localized than the leading EOF, but do resemble one-point correlation maps and sector EOFs calculated for a simulation with zonally symmetric boundary conditions. Thus, the leading EOF for each simulation appears to represent the longitudinal distribution of zonally localized NAO-like patterns. This longitudinal distribution appears to be tied to the distribution of high-frequency eddies, as represented by the storm tracks. A detailed momentum budget for each case confirms that high-frequency eddies play a crucial role in producing the NAO-like patterns. Other dynamical processes also play an important role, but vary with the details of the simulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3