Standing Internal Tides in the Tasman Sea Observed by Gliders

Author:

Johnston T. M. Shaun1,Rudnick Daniel L.1,Kelly Samuel M.2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Large Lakes Observatory and Department of Physics, University of Minnesota Duluth, Duluth, Minnesota

Abstract

AbstractLow-mode internal tides are generated at tall submarine ridges, propagate across the open ocean with little attenuation, and reach distant continental slopes. A semidiurnal internal tide beam, identified in previous altimetric observations and modeling, emanates from the Macquarie Ridge, crosses the Tasman Sea, and impinges on the Tasmanian slope. Spatial surveys covering within 150 km of the slope by two autonomous underwater gliders with maximum profile depths of 500 and 1000 m show the steepest slope near 43°S reflects almost all of the incident energy flux to form a standing wave. Starting from the slope and moving offshore by one wavelength (~150 km), potential energy density displays an antinode–node–antinode–node structure, while kinetic energy density shows the opposite.Mission-mean mode-1 incident and reflected flux magnitudes are distinguished by treating each glider’s survey as an internal wave antenna for measuring amplitude, wavelength, and direction. Incident fluxes are 1.4 and 2.3 kW m−1 from the two missions, while reflected fluxes are 1.2 and 1.8 kW m−1. From one glider surveying the region of highest energy at the steepest slope, the reflectivity estimates are 0.8 and 1, if one considers the kinetic and potential energy densities separately. These results are in agreement with mode-1 reflectivity of 0.7–1 from a model in one horizontal dimension with realistic topography and stratification. The direction of the incident internal tides is consistent with altimetry and modeling, while the reflected tide is consistent with specular reflection from a straight coastline.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3