Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback

Author:

Ivanov Vladimir1234,Alexeev Vladimir4,Koldunov Nikolay V.5,Repina Irina362,Sandø Anne Britt78,Smedsrud Lars Henrik98,Smirnov Alexander1

Affiliation:

1. + Arctic and Antarctic Research Institute, St. Petersburg, Russia

2. # Hydrometeorological Centre of Russia, Moscow, Russia

3. @ A. M. Obukhov Institute of Atmospheric Physics, Moscow, Russia

4. & International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

5. ** Climate Service Center 2.0, Helmholtz-Zentrum Geesthacht, Hamburg, Germany

6. ++ Space Research Institute, Moscow, Russia

7. ## Institute of Marine Research, Bergen, Norway

8. @@ Bjerknes Centre for Climate Research, Bergen, Norway

9. && Geophysical Institute, University of Bergen, Bergen, Norway

Abstract

AbstractBroad, long-living, ice-free areas in midwinter northeast of Svalbard between 2011 and 2014 are investigated. The formation of these persistent and reemerging anomalies is linked, hypothetically, with the increased seasonality of Arctic sea ice cover, enabling an enhanced influence of oceanic heat on sea ice and, in particular, heat transported by Atlantic Water. The “memory” of ice-depleted conditions in summer is transferred to the fall season through excess heat content in the upper mixed layer, which in turn transfers to midwinter via thinner and younger ice. This thinner ice is more fragile and mobile, thus facilitating the formation of polynyas and leads. When openings in ice cover form along the Atlantic Water pathway, weak density stratification at the mixed layer base supports the development of thermohaline convection, which further entrains warm and salty water from deeper layers. Convection-induced upward heat flux from the Atlantic layer retards ice formation, either keeping ice thickness low or blocking ice formation entirely. Certain stages of this chain of events have been examined in a region north of Svalbard and Franz Joseph Land, between 80° and 83°N and 15° and 60°E, where the top hundred meters of Atlantic inflow through the Fram Strait cools and freshens rapidly. Complementary research methods, including statistical analyses of observations and numerical modeling, are used to support the basic concept that the recently observed retreat of sea ice northeast of Svalbard in winter may be explained by a positive feedback between summer ice decay and the growing influence of oceanic heat on a seasonal time scale.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3