North Atlantic warming and declining volume of arctic sea ice
Author:
Alexeev V. A., Ivanov V. V., Kwok R., Smedsrud L. H.ORCID
Abstract
Abstract. Long-term thinning of arctic sea ice over the last few decades has resulted in significant declines in the coverage of thick multi-year ice accompanied by a proportional increase in thinner first-year ice. This change is often attributed to changes in the arctic atmosphere, both in composition and large-scale circulation, and greater inflow of warmer Pacific water through the Bering Strait. The Atlantic Water (AW) entering the Arctic through Fram Strait has often been considered less important because of strong stratification in the Arctic Ocean and the deeper location of AW compared to Pacific water. In our combined examination of oceanographic measurements and satellite observations of ice concentration and thickness, we find evidence that AW has a direct impact on the thinning of arctic sea ice downstream of Svalbard Archipelago. The affected area extends as far as Severnaya Zemlya Archipelago. The imprints of AW appear as local minima in sea ice thickness; ice thickness is significantly less than that expected of first-year ice. Our lower-end conservative estimates indicate that the recent AW warming episode could have contributed up to 150–200 km3 of sea ice melt per year, which would constitute about 20% of the total 900 km3yr−1 negative trend in sea ice volume since 2004.
Publisher
Copernicus GmbH
Reference35 articles.
1. Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M. Part 1: Description and basic evaluation, in review, 2012. 2. Björk, G., Söderkvist, J., Winsor, P., Nikolopoulos, A., and Steele, M.: Return of the cold halocline layer to the Amundsen Basin of the Arctic Ocean: implications for the sea ice mass balance, Geophys. Res. Lett. 29, 1513, https://doi.org/10.1029/2001GL014157, 2002. 3. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., and Thepaut, J. N.: The Era-Interim reanalysis: configuration and performance of the data assimilation system, Q. J Roy. Meteor. Soc., 137, 553–597, 2011. 4. Environmental Working Group, Arctic Climatology Project. Arctic Meteorology and Climate Atlas, edited by: Fetterer, F. and Radionov, V., Boulder, CO: National Snow and Ice Data Center, USA CD-ROM; also available from http://www.aari.ru/, 2000. 5. Francis, J. A. and Hunter, E.: Changing fabric of the arctic blanket, Environ. Res. Lett., 2, 045011, https://doi.org/10.1088/1748-9326/2/4/045011, 2007.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|