The Eddy–Mean Flow Interaction and the Intrusion of Western Boundary Current into the South China Sea–Type Basin in an Idealized Model

Author:

Zhong Linhao1,Hua Lijuan2,Luo Dehai1

Affiliation:

1. Key Laboratory of Regional Climate-Environment for East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing, China

Abstract

AbstractIn this paper, an ideal model of the role of mesoscale eddies in the Kuroshio intruding into the South China Sea (SCS) is developed, which represents the northwestern Pacific and the SCS as two rectangular basins connected by a gap. In the case of considering only intrinsic ocean variability, a time-dependent western boundary current (WBC) driven by steady wind is modeled under both eddy-resolving and noneddy-resolving resolutions. Almost all simulated WBCs intrude into the adjacent sea in the form of the Loop Current with multiple-state transitions and eddy-shedding processes, which have aperiodic variations on intraseasonal or interannual scales, determined by the eddy-induced WBC variation. For the parameters considered in this paper, the WBC intrusion exhibits a 30–90-day cycle in the presence of the subgrid-scale eddy forcing (SSEF) but a 300–500-day cycle in the absence of SSEF. Moreover, the roles of the grid-scale and subgrid-scale eddies in the WBC intrusion are studied by using the dynamically consistent decomposition developed by Berloff. Based on the large-sample composite analysis of the intrusion events, it is found that the Loop Current intensity is mainly determined by baroclinic processes through grid-scale, eddy–eddy interaction and subgrid-scale, eddy–flow interaction. The intrusion position and period are mainly regulated by the SSEF to the west of gap, where the balance between relative vorticity and isopycnal thickness SSEFs determines eddy detachment. Generally, the relative vorticity SSEF therein tends to induce WBC intrusion. However, the isopycnal thickness SSEF tends to induce eddy shedding, and WBC retreat thus determines the intrusion cycle through counteracting relative vorticity SSEF.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3