Nonlinear Dynamics of a Hysteresis Western Boundary Current Perturbed by a Mesoscale Eddy at a Gap with an Island

Author:

Mei Huan1,Qi Yiquan2,Cheng Xuhua2,Wu Xiangbai1,Wang Qiang3

Affiliation:

1. a School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang, China

2. b College of Oceanography, Hohai University, Nanjing, China

3. c State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Abstract

Abstract We study a hysteresis western boundary current (WBC) flowing across a gap impinged by a mesoscale eddy, with an island of variable meridional size in the gap, using a 1.5-layer ocean model. The hysteresis curves suggest the island with a larger size facilitates the WBC intrusion by shedding the eddy more easily. Both anticyclonic and cyclonic eddies are able to induce the critical WBC transition from penetration regime to leap regime, and vice versa. The vorticity balance analysis indicates increased (decreased) meridional advection that induces the critical WBC shifting from the eddy shedding (leaping) regime to the leaping (eddy shedding) regime. The meridional size of the island significantly affects the critical WBC transition in terms of the critical strength of the mesoscale eddy. The regime shift from penetration to leap is most sensitive to the eddy upstream of the WBC for small islands and most sensitive to the southern anticyclonic eddy and northern cyclonic eddy for moderate and large islands. It is least sensitive to the central cyclonic eddy for small islands and to the cyclonic eddy upstream of the WBC for moderate and large islands and to the northern anticyclonic eddy regardless of island size. The regime shift from leap to penetration is most sensitive to the cyclonic eddy upstream of the WBC and to the northern anticyclonic eddy. It is least sensitive to the anticyclonic eddy from the south, and the least sensitive location of the cyclonic eddy shifts northward from the gap center as the island size increases.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3