Extreme Daily Rainfall in Pakistan and North India: Scale Interactions, Mechanisms, and Precursors

Author:

Hunt Kieran M. R.1,Turner Andrew G.2,Shaffrey Len C.3

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. National Centre for Atmospheric Science, and Department of Meteorology, University of Reading, Reading, United Kingdom

3. National Centre for Atmospheric Science, University of Reading, United Kingdom

Abstract

While much of India is used to heavy precipitation and frequent low pressure systems during the summer monsoon, toward the northwest and into Pakistan, such events are uncommon. Here, as much as a third of the annual rainfall is delivered sporadically during the winter monsoon by western disturbances. Such events of sparse but heavy precipitation in this region of typically mountainous valleys in the north and desert in the south can be catastrophic, as in the case of the Pakistan floods of July 2010. In this study, extreme precipitation events (EPEs) in a box approximately covering this region (25°–38°N, 65°–78°E) are identified using the APHRODITE gauge-based precipitation product. The role of the large-scale circulation in causing EPEs is investigated: it is found that, during winter, it often coexists with an upper-tropospheric Rossby wave train that has prominent anomalous southerlies over the region of interest. These winter EPEs are also found to be strongly collocated with incident western disturbances whereas those occurring during the summer are found to have a less direct relationship. Conversely, summer EPEs are found to have a strong relationship with tropical lows. A detailed Lagrangian method is used to explore possible sources of moisture for such events and suggests that, in winter, the moisture is mostly drawn from the Arabian Sea, whereas during the summer, it comes from along the African coast and the Indian monsoon trough region.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3