The Effect of Thinning and Superobservations in a Simple One-Dimensional Data Analysis with Mischaracterized Error

Author:

Hoffman Ross N.1

Affiliation:

1. NOAA/Atlantic Oceanographic and Meteorological Laboratory, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, and Atmospheric and Environmental Research, Lexington, Massachusetts

Abstract

A one-dimensional (1D) analysis problem is defined and analyzed to explore the interaction of observation thinning or superobservation with observation errors that are correlated or systematic. The general formulation might be applied to a 1D analysis of radiance or radio occultation observations in order to develop a strategy for the use of such data in a full data assimilation system, but is applied here to a simple analysis problem with parameterized error covariances. Findings for the simple problem include the following. For a variational analysis method that includes an estimate of the full observation error covariances, the analysis is more sensitive to variations in the estimated background and observation error standard deviations than to variations in the corresponding correlation length scales. Furthermore, if everything else is fixed, the analysis error increases with decreasing true background error correlation length scale and with increasing true observation error correlation length scale. For a weighted least squares analysis method that assumes the observation errors are uncorrelated, best results are obtained for some degree of thinning and/or tuning of the weights. Without tuning, the best strategy is superobservation with a spacing approximately equal to the observation error correlation length scale.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3