Intensity and Inner-Core Structure of Typhoon Haiyan (2013) near Landfall: Doppler Radar Analysis

Author:

Shimada Udai1,Kubota Hisayuki2,Yamada Hiroyuki3,Cayanan Esperanza O.4,Hilario Flaviana D.4

Affiliation:

1. Meteorological Research Institute, Tsukuba, Ibaraki, Japan

2. Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

3. University of the Ryukyus, Nishihara, Okinawa, Japan

4. Philippine Atmospheric, Geophysical and Astronomical Services Administration, Quezon City, Metro Manila, Philippines

Abstract

Abstract The intensity and inner-core structure of an extremely intense tropical cyclone, Typhoon Haiyan (2013), were examined using real-time ground-based Doppler radar products from the Guiuan radar over the period of about 2.5 h immediately before the storm approached Guiuan in Eastern Samar, Philippines. Haiyan’s wind fields from 2- to 6-km altitude were retrieved by the ground-based velocity track display (GBVTD) technique from the Doppler velocity data. The GBVTD-retrieved maximum wind speed reached 101 m s−1 at 4-km altitude on the right side of the track. The relatively fast forward speed of Haiyan, about 11 m s−1, increased maximum wind speed on the right-hand side of the storm. Azimuthal mean tangential wind increased with height from 2 to 5 km, and a local maximum of 86 m s−1 occurred at 5-km altitude. The central pressure was estimated as 906 hPa with an uncertainty of ±4 hPa by using the GBVTD-retrieved tangential wind and by assuming gradient wind balance. The radius of maximum radar reflectivity was about 23 km from the center, a few kilometers inside the radius of maximum wind. The reflectivity structure was highly asymmetric at and above 3-km altitude, and was more symmetric below 3-km altitude in the presence of relatively weak vertical shear (~4 m s−1). The center of the eyewall ring was tilted slightly downshear with height.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3